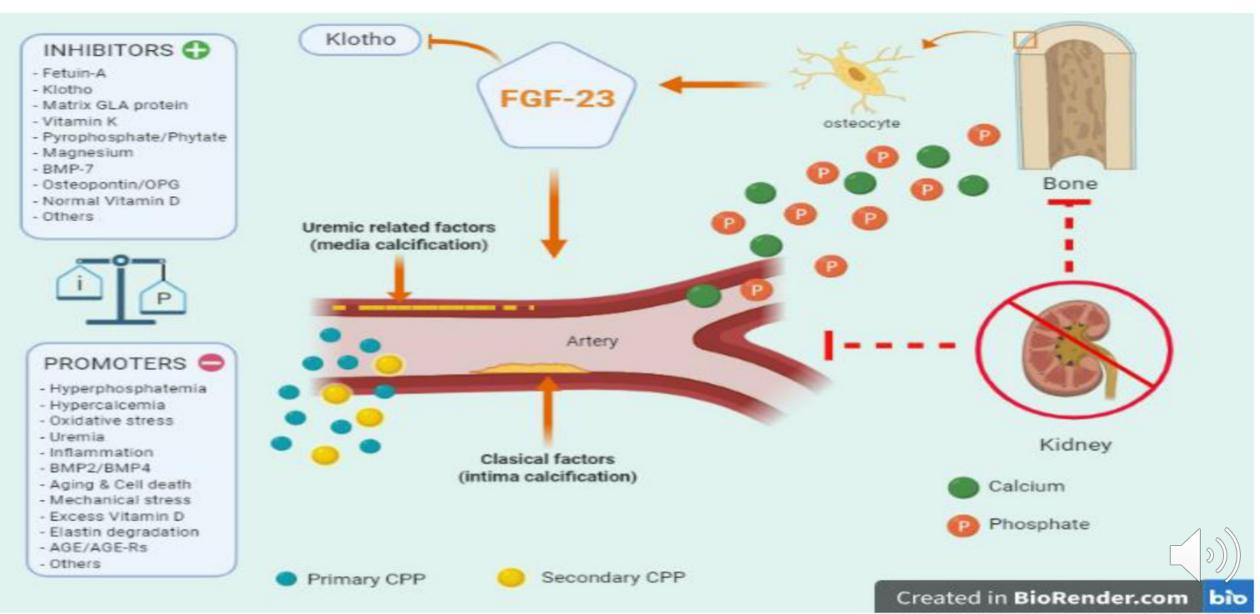
Vascular calcification treatment & prophylaxis

T.Sabaghian

Assistant professor of nephrology Shahid Beheshti Medical university Tehran-Iran Ph.sabaghian@gmail.com


OUTLINE:

- Blood pressure management
- Lipid lowering agent
- Hyperphosphatemia
- New agent: Sucroferric oxyhydroxide, Tenapanor, Nicotinamide
- Magnesium
- Calcimimetics
- Parathyroidectomy

- vitamin D
- vitamin K
- ACEI/ARB
- Iron
- SNF472
- Romosozumab
- Apabetalone
- Exogenous Parath Hormone

Vascular calcification

Blood pressure management

- No evidence that antihypertensive therapy affects VC but may reduce myocardial fibrosis and LVH
- retard the progression of CKD stages 2-5
- KDIGO guidelines recommend: target blood pressure in CKD
- 1. patients with albuminuria $\leq 140 \leq 90$ mm Hg
- 2. patients without albuminuria: $\leq 130 / \leq 80 \text{ mm Hg}$
- Meta-analyses reported benefits of antihypertensive therapy compared to placebo for cardiovascular protection in hemodialysis patients

Lipid lowering agent

Statin therapy in patients with CKD:

Reduce cardiovascular mortality and cardiovascular event

Statins on dialysis : inconsistently improving cardiovascular outcomes

- Only RCT SHARP (using statin plus ezetemibe), :significant effect in dialysis patients
- AURORA: No effect

Fibrates in patients with CKD: No RCT supports usage

Strategies to Manage Hyperphosphatemia

Dietary phosphate restriction Dialytic removal of phosphate use of phosphate binders **Beverages and foods with phosphate additives:** Soft drinks; dehydrated milk; processed cheese and meats, packaged desserts, instant coffees

Hard cheeses: parmesan, cheddar, etc. Nuts and egg yolk

Meat: sausages, organ meats (liver, brain)^a Turkey, shrimp; squid; salmon^a Soft cheeses: cottage cheese, mozzarella

Meat: rabbit, lamb, pork, veal, ham with no preservatives^b Chicken;^a trout; tuna; cod; hake; sole Milk; yogurt

Cereals: bread, pasta, rice, couscous, corn flour, etc. **Legumes:** peas, broad beans, chickpeas, lentils, soy, etc.

Egg white, butter,^d sugar,^e protein-free products^f Fruits and vegetables:^c olive oil and vegetable fats^d

Phosphate content of drug

Medication and Dosage (mg)	Phosphate Content (mg)*
Paroxetine	
10.0 mg	17.1–147.9 mg
20.0 mg	55.8–295.8 mg
30.0 mg	443.7 mg
<mark>40.0</mark> mg	111.5 mg
Amlodipine	
2.5 mg	20.9–29.1 mg
5.0 mg	3.8–82.8 mg
10.0 mg	7.9–165.6 mg
Lisinopril	
5.0 mg	3.6–18.4 mg
10.0 mg	21.4–32.6 mg
20.0 mg	7.4–30.7 mg
30.0 mg	27.4 mg
40.0 mg	26.2–30.8 mg
Sitagliptin	
25.0 mg	7.3 mg
50.0 mg	13.2 mg
Acetaminophen	
8 mg Codeine	60 mg
15 mg Codeine	60 mg
30 mg Codeine	60 mg

Phosphate-Binding Agents

Туре	Daily Dose	Daily Pill Burden	Advantages	Disadvantages
Aluminum hydroxide	No safe dose identified	_	Effective, inexpensive	Potential for aluminum toxicity. Patient requires careful monitoring
Calcium acetate	667 mg	6–12 capsules	Effective, potentially more so than calcium carbonate with less calcium absorption	Potential for hypercalcemia; extra-skeletal calcification; PTH suppression; GI side effects
Calcium carbonate	500–1250 mg	3–6 tablets	Effective, inexpensive	Potential for increased hypercalcemia – could lead to vascular calcification; GI side effects
Calcium citrate	4000–6000 mg (equivalent to 250 mg calcium per day)	4–6 pills	Effective, inexpensive	Enhancement of aluminum absorption; GI side effects; not recommended in CKD
Sevelamer hydrochloride	800 mg	6–12 capsules	Effective; lipid-lowering effect; no calcium	Cost; GI side effects; potential development of metabolic acidosis
Sevelamer carbonate	800 mg	6–12 capsules	Effective; lipid-lowering effect; no calcium	Cost; Gl side effects
Lanthanum carbonate	250–1000 mg	3–6 chewable tablets	Effective; no calcium	Cost; Gl side effects; systemic absorption may be a concern due to potential for accumulation
Sucroferric oxyhydroxide	500 mg	2–6 chewable tablets	Effective; no calcium; does not lead to iron overload	Cost; discolored feces; GI side effects

International Journal of Nephrology and Renovascular Disease 2021:14

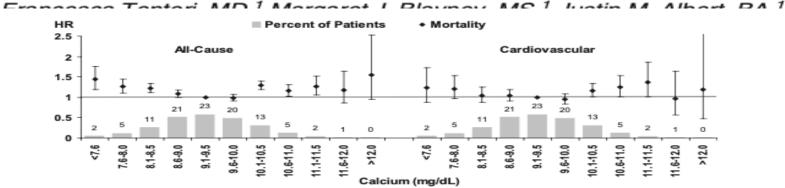
Overall Evidence for Phosphate-Binding Therapy CKD G3-G5

Trial	Mean eGFR, mL/min/ N 1.73 m ²	Intervention Arms	Duration, mo	End Point	Results	Comment
Russo et al ⁶⁵	90 33 vs 26 vs 26	Diet, diet + CaCO ₃ , diet + sevelamer	24 ± 4.2	1. CAC score	1. CAC progression w/ diet + CaCO ₃ ; stable w/ sevelamer 2. Urine P decreased in binder groups 3. ALP decreased in diet and diet + sevelamer group	Excluded those w/ diabetes; excluded previous coronary procedures; CONSORT criteria not described in publication
Block et al [∍]	148 32	Calcium acetate, lanthanum, sevelamer, placebo	9	1. Biochemical changes 2. VC	1. Binders lowered serum P, urine P; PTH stable w/ binders and increased w/ placebo 2. Calcification increased w/ binders	Did not exclude previous coronary procedures; all patients received fixed dose vitamin D; high dropout rate (28%); only 96 patients had calcification data
Seifert et al ⁶⁶	38 CKD G3	Lanthanum, placebo	12	1. Biochemical changes 2. PWV, cIMT, and VC	None of the studied parameters were different between lanthanum and placebo	Pilot study; matching performed between the 2 groups
Ureña- Torres et al ¹²	35 42 vs 48	Lanthanum, placebo	3	1. Biochemical changes	1. No sustained reduction in FGF-23 2. Decrease in urine P	GFR was measured; imbalance in characteristics between the 2 groups
Kovesdy et al ⁶⁷	120 32	Diet, lanthanum, calcium acetate	12	FMD	 bALP lower after 1 y No other changes compared to baseline Calcium acetate suppressed PTH 	Randomized, open- label, 2-center trial; predominantly men; powered to detect changes in bone- mineral parameters
Di Iorio et al ⁶⁸	212 32.7	Sevelamer, CaCO₃	36	 Predialysis mortality Dialysis start 	 Biochemical results more favorable w/ sevelamer Mortality lower w/ sevelamer Dialysis start less frequent w/sevelamer 	Randomized nonblinded study; RCT was not registered; benefits implausibly large
lx et al ¹⁰	205 32	NAM + lanthanum, NAM + placebo, lanthanum + placebo, double placebo	12	1. Biochemical changes	No significant change in serum P or FGF-23 concentrations between the 4 arms	Randomized, blinded, placebo-controlled trial; suboptimal adherence due to GI side effects
Ruggiero et al ¹¹	53 49	Sevelamer, no sevelamer	3	 Proteinuria Biochemical changes 	 No change in proteinuria Sevelamer reduced urine P; no change in serum P, FGF-23, klotho, PTH, vitamin D 	Randomized, open label, 2-center, crossover trial; GFR was measured
Block et al ¹⁴	199 CKD G4-G5	Ferric citrate, usual care	9	 Biochemical changes Hospital- ization Kidney failure, death 	1. Iron parameters and Hb increased on ferric citrate 2. FGF-23 stabilized on ferric citrate compared to increasing on usual care 3. Event rates lower on ferric citrate	Randomized popul- imbalanced; high out rate for bioch end points due to dialysis transition; reported event end points were exploratory (not registered)

Trial	N	Mean eGFR, mL/min/ 1.73 m ²	Intervention Arms	Duration, mo	, End Point	Results	Comment
Di Iorio et al ⁶⁸	212	32.7	Sevelamer, CaCO₃		 Predialysis mortality Dialysis start 		Randomized nonblinded study; RCT was not registered; benefits implausibly large
lx et al ¹⁰	205		NAM + lanthanum, NAM + placebo, lanthanum + placebo, double placebo		1. Biochemical changes	serum P or FGF-23 concentrations between	Randomized, blinded, placebo-controlled trial; suboptimal adherence due to GI side effects
Ruggiero et al ¹¹	53		Sevelamer, no sevelamer	_	 Proteinuria Biochemical changes 	2. Sevelamer reduced	Randomized, open label, 2-center, crossover trial; GFR was measured
Block et al ¹⁴			Ferric citrate, usual care		 Biochemical changes Hospital- ization Kidney failure, death 	increased on ferric citrate 2. FGF-23 stabilized on ferric citrate compared to increasing on usual care	Randomized population imbalanced; high drop- out rate for biochemical end points due to dialysis transition; reported event end points were explor (not registered)

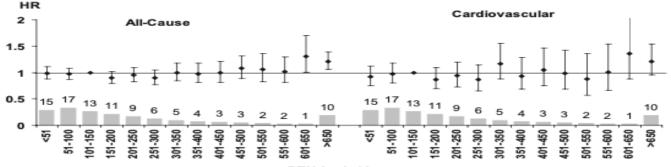
Evidence for Phosphate-Binding Therapy CKD G3-G5

Patient-centered and clinical outcome studies are needed before use of phosphate binders of any type can be recommended in patients with CKD G3-G5 except to control symptomatic or severe hyperphosphatemia



Evidence for Phosphate-Binding Therapy CKD 5D

- No trials evaluate effects on clinical outcomes compared with placebo
- Hyperphosphatemia may become severe in CKD G5D, resulting in symptoms and well-described clinical complications such as bone disease, calciphylaxis, and itching
- Use of binders to prevent clinically important hyperphosphatemia is justified



Mortality Risk for Dialysis Patients With Different Levels of Serum Calcium, Phosphorus, and PTH: The Dialysis Outcomes and Practice Patterns Study (DOPPS)

HR 3 Cardiovascular All-Cause 2.5 2 1.5 1 12 0.5 11 5 1 3 0 -1 0 9.6-10.0 >10.0 9.1-9.5 >10.0 .6-10. v 5 5 2 é v 5 2 ~? ₫ 5 42 2 5 59 9.1-9. 귾

Phosphorus (mg/dL)

()))

Disorders in bone-mineral parameters and the risk of death in persons with chronic kidney disease stages 4 and 5: the PECERA study

Calcium TRACTOR NO. Study Exposure ≤ 10.5 mg/dL Patient Selection & Study Design Ca P PTH Phosphate 2.8 to 5.0 mg/dL 966 patients **iPTH** Serum levels of -Age >18 years calcium, phosphate 38 to 112 pg/mL -ND-CKD 4-5 and iPTH with -Prospective repeated measures -3y follow-up every 6 months

Results: lowest mortality risk ranges

Journal of Nephrology

Molina et al, 2021

Conclusion. There was a non-linear association of serum calcium, phosphate and iPTH levels with mortality in stage 4 and 5 ND-CKD patient as previously reported for dialysis patients.

The effects of non-calcium-based phosphate binders versus calcium-based phosphate binders on cardiovascular calcification and bone remodeling among dialysis patients: a metaanalysis of randomized trials

Ling Liu, Yongjun Wang, Hongyu Chen, Xiaoling Zhu, Liusha Zhou & Yazhen Yang

Eighteen eligible randomized controlled trials totaling 3676 patients

- serum calcium levels significant lower in NCPB group than in CPB groups
- serum iPTH levels were significantly higher in NCPB groups

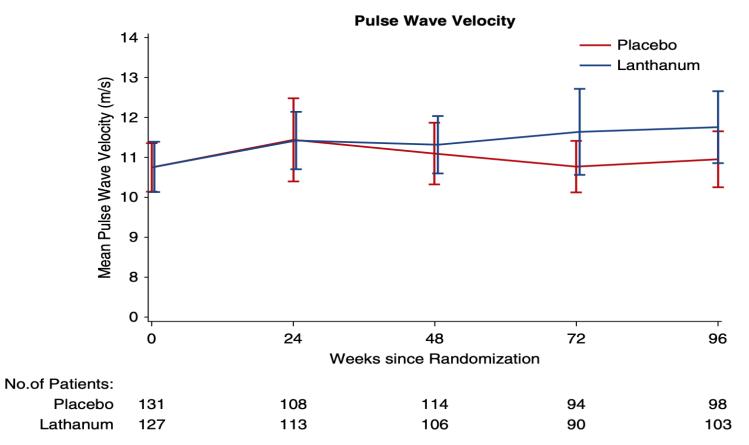
		NCBP			CBP		WMD		WMD
Trials	Mean	SD	Total	Mean	SD	Total	IV,random [95% CI]	Weight	IV,random [95% CI]
1.1 follow up 6 month	S								
Kalil 2012	-202	260	7	229.9	599	6	•	0.9%	-431.90 [-948.44, 84.64]
Braun 2004	-260	782	37	111	518	42		2.5%	-371.00 [-667.70, -74.30]
Chertow 2002	-134	697	66	110	413	75		5.4%	-244.00 [-436.39, -51.61]
Block 2005	16	286	51	48	452	53		8.5%	-32.00 [-176.81, 112.81]
Qunibi 2008	97	211	68	109	374	71		13.8%	-12.00 [-112.41, 88.41]
Subtotal (95% CI)			229			247		31.2%	-144.62 [-285.62, -3.63]
Heterogeneity: Tau ² = 1			df = 4 (P =	0.03); I ² =	62%				
Test for overall effect: Z	= 2.01 (P =	0.04)							
1.2 follow up 12 mont									
Braun 2004	-130	791	36	200	620	46		2.3%	-330.00 [-644.43, -15.57]
Kalil 2012	9.2	388.6	6	225.8	637	5			-216.60 [-855.69, 422.49]
Chertow 2002	-46	692	62	151	471	70		4.9%	-197.00 [-401.56, 7.56]
Kakuta 2011	81.8	186.3	91	194	2,627	92			-112.20 [-650.37, 425.97]
Block 2005	87	324	45	169	311	47		10.0%	-82.00 [-211.87, 47.87]
Barreto 2008	139	240	41	182	333	30		8.9%	-43.00 [-182.99, 96.99]
Qunibi 2008	227	485	68	228	355	58		8.3%	-1.00 [-148.09, 146.09]
Subtotal (95% CI)			349			348		35.8%	-81.78 [-153.12, -10.43]
Heterogeneity: Tau ² = 0.			P = 0.51);	= 0%					
Test for overall effect: Z	= 2.25 (P =	0.02)							
1.3 follow up 18 mont	hs								
Block 2005	138	412	40	338	707	45		3.6%	-200.00 [-442.84, 42.84]
Subtotal (95% CI)			40	000		45		3.6%	-200.00 [-442.84, 42.84]
Heterogeneity: Not appl	icable								
Test for overall effect: Z		0.11)							
	•								
1.4 final follow up of i	ncluded stu	udies							
Braun 2004	-130	791	36	200	620	46		2.3%	-330.00 [-644.43, -15.57]
Kalil 2012	9.2	388.6	6	225.8	637	5	•		-216.60 [-855.69, 422.49]
Block 2005	138	412	40	338	707	45		3.6%	-200.00 [-442.84, 42.84]
Chertow 2002	-46	692	62	151	471	70		4.9%	-197.00 [-401.56, 7.56]
Kakuta 2011	81.8	186.3	91	194	2,627	92			-112.20 [-650.37, 425.97]
Barreto 2008	139	240	41	182	333	30		8.9%	-43.00 [-182.99, 96.99]
Qunibi 2008	227	485	68	228	355	58		8.3%	-1.00 [-148.09, 146.09]
Subtotal (95% CI)			344			346	-	29.4%	-95.44 [-176.76, -14.12]
Heterogeneity: Tau ² = 1			6 (P = 0.4)	2); I ² = 1%			to the test		
Test for overall effect: Z	= 2.30 (P =	0.02)					-500 -250 Ó 250 5ÓN		
							Favours NCBP Favours CBP		
									4

())

 NCBP could significantly attenuate progression of coronary artery calcification than CBP Will early phosphate binder use confer any vascular protection in predialysis patients?

A Randomized Trial on the Effect of Phosphate Reduction on Vascular End Points in CKD (IMPROVE-CKD)

138 participants received lanthanum and 140 received placebo (mean age 63y Mean eGFR : 26.6 ml/min per 1.73 m2


Mean serum phosphate :3.87 mg/dl

At 96 weeks, pulse wave velocity and abdominal aortic calcification: no difference

phosphate, PTH, FGF23, and 24-hour urinary phosphate, Serious adverse events (46%) :No difference

A Randomized Trial on the Effect of Phosphate Reduction on Vascular End Points in CKD (IMPROVE-CKD)

A Randomized Trial on the Effect of Phosphate Reduction on Vascular End Points in CKD (IMPROVE-CKD) Abdominal aorta calcification

Subgroup	Ν		Mean Difference (95% Cl)	P-value
CKD stage				
Stage 3b	91		1.20 (-0.39, 2.79)	0
Stage 4	187	+ •	0.31 (-0.81, 1.42)	.3
Age				
< 65 yrs	137		0.30 (-0.98, 1.57)	.58
>=65 yrs	141	•	0.92 (-0.34, 2.18)	.56
Diabetes mellitus				
No	160		0.47 (-0.74, 1.68)	.75
Yes	118		0.77 (-0.65, 2.18)	.75
AAC				
No	44		—— 1.42 (-0.64, 3.49)	7
Yes	191		0.49 (-0.54, 1.52)	.7
Phosphate				
<=1.3 mmol/L	142		0.13 (-1.12, 1.38)	00
>1.3 mmol/L	136		1.05 (-0.32, 2.42)	.89
				
	-3 -	-1.5 0 1.5	4	
	Lanthar	num better Placebo bet	tter	

Article Type: Original Investigation

Safety and Efficacy of Tenapanor for Long-term Serum Phosphorus Control in Maintenance Dialysis: A 52-Week Randomized Phase 3 Trial (PHREEDOM)

DOI: 10.34067/KID.0002002021

- non-binder, sodium/hydrogen exchanger isoform 3 (NHE3) inhibitor
- 52-week , 564 HD patients
- Tenapanor 30 mg twice daily or sevelamer carbonate
- The most frequent Adverse event: Loosened stools (53%)
- Serious adverse events were reported more frequently for sevelamer carbonate (16–23% compared with tenapanor 11–17%)
- Conclusions: Tenapanor reduced serum phosphorus concentrations and maintained control of serum phosphorus with an acceptable safety and tolerability profile

Long-term effects of iron-based phosphate binder, sucroferric oxyhydroxide, in dialysis patients

Article in Nephrology Dialysis Transplantation · February 2015

DOI: 10.1093/ndt/gfv006 · Source: PubMed

- Approved for the control of serum phosphate levels in patients with ESKD
- lower pill burden compared with sevelamer
- Well tolerated
- No evidence of Iron accumulation

Nicotinamide

- lower intestinal phosphate absorption by reducing NaPi2b expression
- Several studies in hemodialysis patients have suggested that nicotinamide treatment may lower serum phosphate levels, although patients in these studies experienced a high number of adverse event (including thrombocytopenia)

Effects of Nicotinamide and Lanthanum Carbonate on Serum Phosphate and Fibroblast Growth Factor-23 in CKD: The COMBINE Trial

JASN 30: 1096-1108, 2019.

RCT, 205 non dialysis CKD with GFR : 32ml/min per 1.73 serum phosphate was 3.7 mg/dl and median FGF23 was 99 pg/ml Mean rates of change in phosphate , percent changes in FGF23 and adverse events rates were similar across arms . These agents appeared safe, intestinal symptoms limited adherence Conclusions: LC and/or NAM treatment did not significantly lower serum phosphate or FGF23 in stage 3b/4 CKD

- Meta-analyses report serum magnesium is inversely associated with cardiovascular risk in both healthy and hemodialysis cohorts
- Mechanism:
- Prevents posttranscriptional changes in VSMC differentiation and apoptosis
- Up-regulates VC inhibitors (MGP and osteopontin)
- Counteracting expression of osteogenic transcription factors (BMP-2, RUNX2)

Evaluation of calcium acetate/magnesium carbonate as a phosphate binder compared with sevelamer hydrochloride in haemodialysis patients: a controlled randomized study (CALMAG study) assessing efficacy and tolerability

- RCT , 255 hemodialysis patients
- Comparison calcium acetate/magnesium carbonate with sevelamer hydrochloride (efficacy and tolerability)
- Efficacy and safety of magnesium carbonate in combination with calcium acetate was noninferior to sevelamer

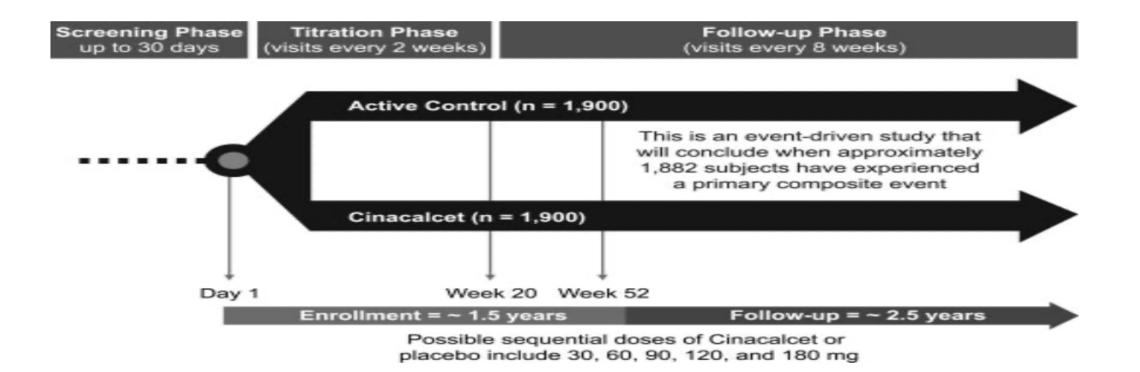
Mg & Vascular calcification

Study	Study type	Population	Treatment	Duration	Primary outcome	Results
Mortazavi et al ¹⁵²	RCT	HD (n = 54)	440 mg Mg oxide thrice weekly versus placebo	6 mo	cIMT	Decrease in cIMT in Mg group (from 0.84 \pm 0.13 mm to 0.76 \pm 0.13 mm, P = .001)
Tzanakis et al ¹⁰⁶	RCT	HD (n = 72)	Mg carbonate + Ca acetate versus Ca acetate alone	12 mo	SVCS	Improvement in small proportion of Mg group (n = 4), no improvement in Ca group (n = 0). Remainder of population either stable or worsening VC (n = ns)
Turgot et al ¹⁵³	RCT	HD (n = 47)	Mg citrate (610 mg) alternate daily vs Ca acetate	2 mo	cIMT	Improvement in cIMT in Mg group (left cIMT <i>P</i> = .001, right cIMT <i>P</i> = .002)
Spiegel et al ¹⁵⁴	R <mark>CT</mark>	HD (n = 7)	Mg carbonate + Ca carbonate as phosphate binder	18 mo	CAC	No median percent change in CAC at completion ($P = .07$)
Molnar et al ¹⁰⁹	Cross-sectional	PD (n = 80)	N/A	N/A	Lateral lumbar X-rays	Higher serum Mg (>0.8 mmol/L) associated with lower AAC score $(R^2 = .006$, unstandardized coefficient [B] = -7.81, $P = .003$)
lshimura et al ¹⁵⁵	Cross-sectional	Nondiabetic HD (n = 390)	N/A	N/A	Hand X-ray	Serum <mark>mg significantly lower</mark> in patients with <mark>VC</mark> than those without (P < .05)
Matias et al ¹⁵⁶	Prospective	Hemofiltration $(n = 206)$	N/A	48 mo	Plain X-ray	Significantly l <mark>ower serum mg</mark> in patients with SVCS≥3 (P = .008)
Zaher et al ¹⁵⁷	Cross-sectional	Children on HD (n = 25)	N/A	N/A	cMIT	Higher cIMT in aorta and carotids in HD group than controls ($P = .034$ and $P = .001$ respectively)

RCT, randomized controlled trial; HD, hemodialysis; PD, peritoneal dialysis; cIMT, carotid intimal medial thickness; Ca, calcium; Mg, magnesium; CKD, provide trials and the second seco

A Randomized Trial of Magnesium Oxide and Oral Carbon Adsorbent for Coronary Artery Calcification in Predialysis CKD Am Soc Nephrol. 2019

- 2-year, open-label, RCT with oral magnesium oxide or oral carbon adsorbent AST-120
- CAC progression in stage 3–4 CKD (96 patients)
- Magnesium oxide : significantly smaller percentage change in CAC score compared with controls (11.3% versus 39.5%)
- AST-120 was not significant slowing of CAC


Calcimimetics

DADVANCE trial :

- 165 dialysis patients
- Effects of cinacalcet on progressive coronary artery, aortic, and valvular calcification
- Beneficial trend (approximately P < 0.05) for both arteries and cardiac valves

Evaluation of Cinacalcet Therapy to Lower Cardiovascular Events (EVOLVE): Rationale and Design Overview

3883 participants, failed to show a difference in primary composite endpoint (death, myocardial infarction, hospitalization for unstable angina, heart failure or peripheral vascular event) in the cinacalcet compared to placebo group

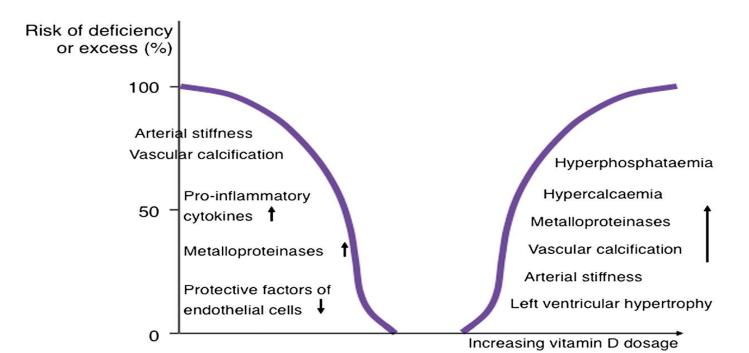
post hoc analyses EVOLVE

reduced incidence of calcific uremic arteriolopathy (CUA)

reduced fracture rate

Decreased risk of death and cardiovascular events

RESEARCH ARTICLE


The shift from high to low turnover bone disease after parathyroidectomy is associated with the progression of vascular calcification in hemodialysis patients: A 12-month followup study

Prospective observational study ,12-month period 19 hemodialysis patients with severe SHPT Result : Parathyroidectomy resulted increased CAC (P = .02) and a shift from high to low bone turnover disease on bone biopsy

vitamin D

Both low and high serum concentrations of vitamin D have been reported to be associated with VC in hemodialysis patients (U-shaped relationship)

Biphasic dose-response curve for vitamin D with deleterious consequences of deficiency or excess

Potential roles of vitamin D in preventing vascular calcification on endothelium and vascular smooth muscle.

• Inhibition of foam cell and cholesterol efflux in macrophage

- 1. Activation of cholesterol 7- α -hydroxylase
- 2. Decrease of oxidative LDL uptake by foamy cells
- Enhancing vascular regeneration (RAAS system inactivation)

Treatment on renal osteodystrophy

- 1. On high-turnover osteodystrophy: inhibition of parathyroid hormone
- 2. On low-turnover osteodystrophy: restoring osteoblast activity

Restoring calcification inhibitors

- 1. Increase of fetuin-A concentration
- 2. Restoring local klotho expression

Double-blind RCTs (PRIMO and OPERA studies) in nondialysis CKD stages 3–5

- With active vitamin D (paricalcitol)
- Failed to improvement in cardiac outcome
- An increased risk of hypercalcemia

Randomized Controlled Trial for the Effect of Vitamin D Supplementation on Vascular Stiffness in CKD

Clin J Am Soc Nephrol 12: 1447–1460, 2017. d

• 119 patients , eGFR of 15–45 ml/min per 1.73 m2

• Change in PWV after 6 months of treatment with a fixed dose of oral calcifediol (5000 IU), calcitriol (0.5 mg), or placebo, thrice weekly

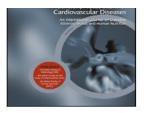
• PWV decreased in the calcifediol group, remained unchanged in the calcitriol group, and increased in the placebo group

A Randomized Trial of Vitamin D Supplementation on Vascular Function in CKD

120 patients ,18–70 years, nondiabetic CKD stage 3–4 and vitamin D deficiency (25OH-D <20 ng/ml) oral doses of cholecalciferol (300,000 IU) or placebo at baseline and 8week

Significant favorable changes in PWV and circulating IL-6 levels Vitamin D supplementation may improve vascular function

KDIGO CKD-MBD guidelines


nutritional vitamin D for treatment of 25(OH)D deficiency but not routine use of calcitriol or vitamin D receptor analogs in predialysis patients, given the risk of hypercalcemia and likely associated procalcific effects

Nutrition, Metabolism & Cardiovascular Diseases

journal homepage: www.elsevier.com/locate/nmcd

The impact of cholecalciferol on markers of vascular calcification in hemodialysis patients: A randomized placebo controlled study

Mona Alshahawey ^{a,*}, Radwa El borolossy ^a, Lamia El Wakeel ^a, Tamer Elsaid ^b, Nagwa Ali Sabri ^a

- Prospective, randomized, placebo-controlled study,60 HD
- Treatment group (Oral 200.000IU Cholecalciferol /month) or a placebo group, for 3 months
- Assessment of 25(OH)D, fetuin-A, FGF-23, osteoprotegerin (OPG), ca, p and iPTH levels, at baseline and at the end of study

Parameter	Drug group $n = 30$	Placebo group $n = 30$	P-value	
25(OH)D ^a ng/ml	Median (IQR)	Median (IQR)		
Before	17.9 (16.48–20)	18.7 (17.3–20.4)	0.312 ^b	
After	32 (29.98-34.15)	18.7 (17.35–19.83)	Treatment:	< 0.001**°
P-value	< 0.001***	0.66 ^a	Time:	< 0.001**°
			Treatment*Tim	e: < 0.001**°
Fetuin-A (g/L)	Median (IQR)	Median (IQR)		
Before	0.168 (0.123-0.202)	0.168 (0.127-0.210)	0.796 ^b	
After	0.199 (0.17-0.279)	0.165 (0.129-0.204)	Treatment:	< 0.001 **°
P-value	< 0.001***	0.819 ^a	Time:	< 0.001**°
			Treatment*Tim	e: < 0.001**°
FGF-23 ^b (pg/mL)	Mean \pm SD	Mean \pm SD		
Before	118.47 ± 10.23	118.49 ± 10.73	0.993 ^b	
After	118.94 ± 11.14	118.86 ± 10.63	Treatment:	0.953 [°]
P-value	0.521 ^a	0.547 ^a	Time:	0.405 [°]
			Treatment*Tim	e: 0.903 [°]
OPG ^c (pmol/L)	Median (IQR)	Median (IQR)		
Before	19.88 (18.34–24.52)	19.99 (17.99–23.53)	0.941 ^b	
After	19.9 (18–23.95)	19.88 (17.89–24.52)	Treatment:	0.902 [°]
P-value	0.39 ^a	0.44 ^a	Time:	0.925 [°]
			Treatment*Tim	e: 0.147 [°]

- Cholecalciferol significantly increased serum levels of 25(OH)D and fetuin-A in the treatment group while no significant difference was observed in the placebo group
- No adverse effects

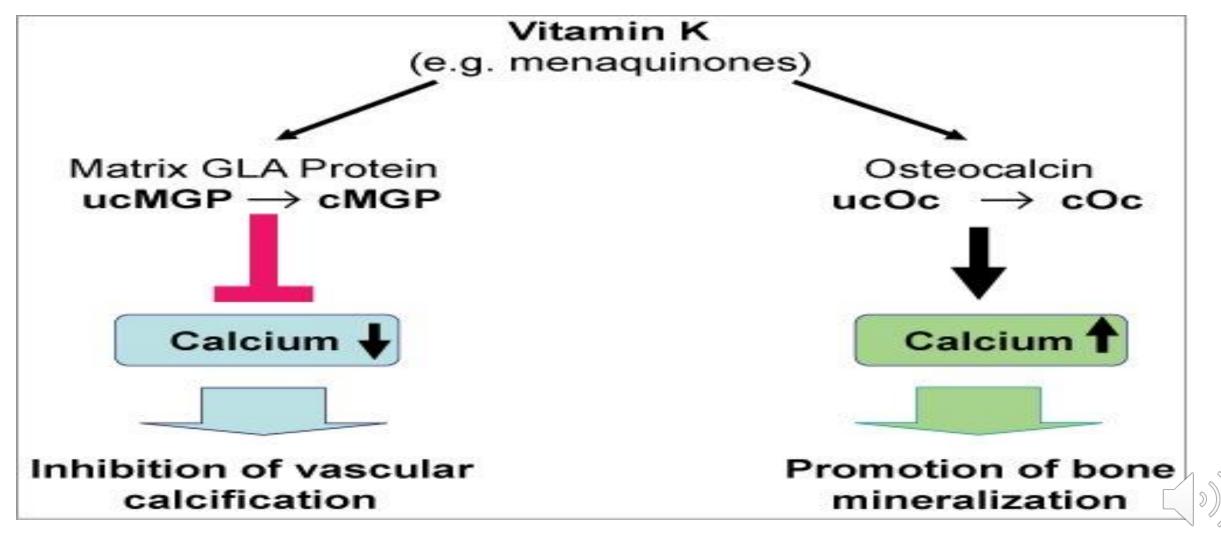
Nutrition, Metabolism & Cardiovascular Diseases

journal homepage: www.elsevier.com/locate/nmcd

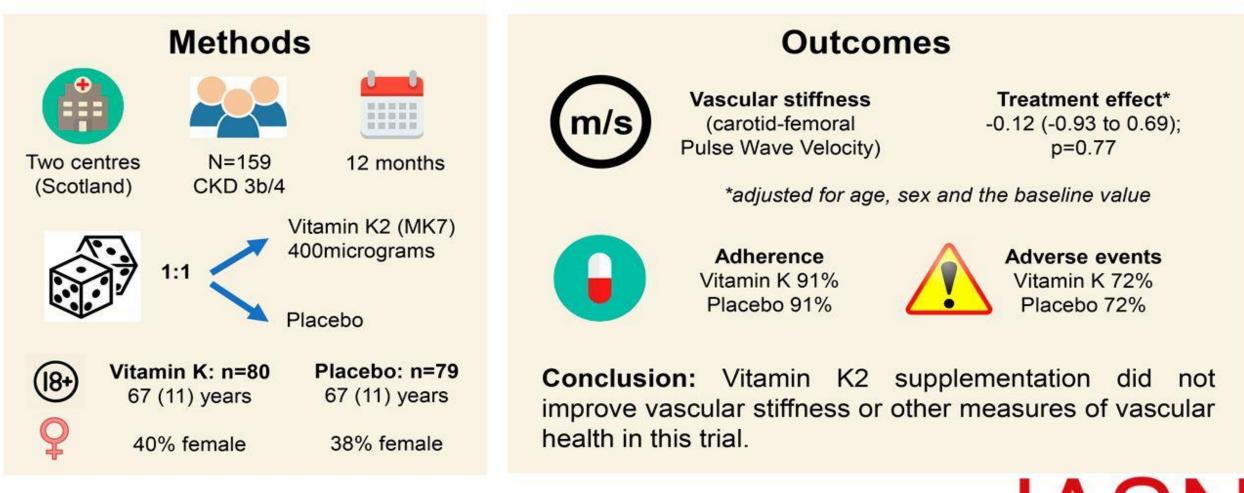
The impact of cholecalciferol on markers of vascular calcification in hemodialysis patients: A randomized placebo controlled study

Mona Alshahawey ^{a,*}, Radwa El borolossy ^a, Lamia El Wakeel ^a, Tamer Elsaid ^b, Nagwa Ali Sabri ^a

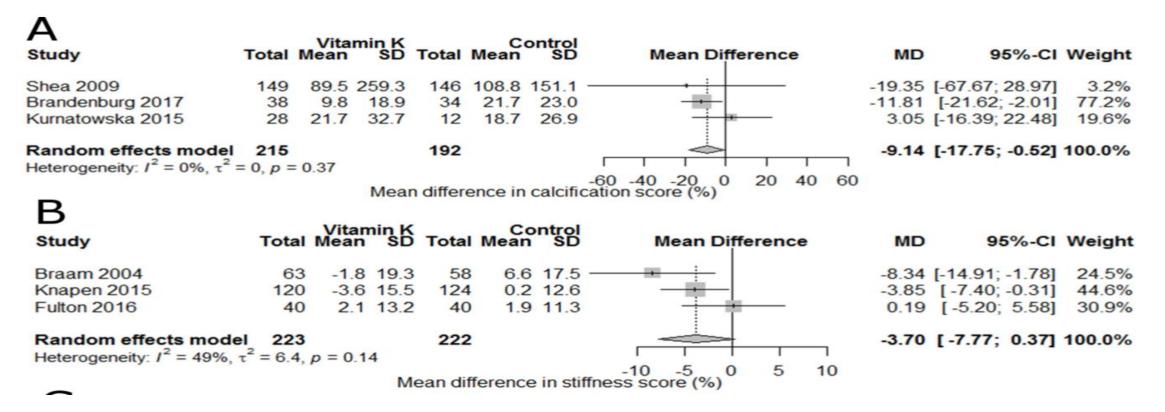
 Conclusion: Cholecalciferol was shown to be an effective, tolerable, inexpensive option to overcome vitamin D deficiency, with a possible modulating effect on fetuin-A, among hemodialysis patients


Nutritional vitamin D and active vitamin D treatment on vascular health

• Uncertain (inconsistent evidence)


 RCTs shows improvement in surrogate markers of vascular stiffness (pulse wave velocity [PWV]) with nutritional vitamin D supplementation but not active vitamin D

Effect of vitamin K on bone and vascular health


Vitamin K supplementation to improve vascular stiffness in chronic kidney disease – the K4Kidneys randomised controlled trial

10.1681/ASN.2020020225

Vitamin K status, supplementation and vascular disease: a systematic review and meta-analysis

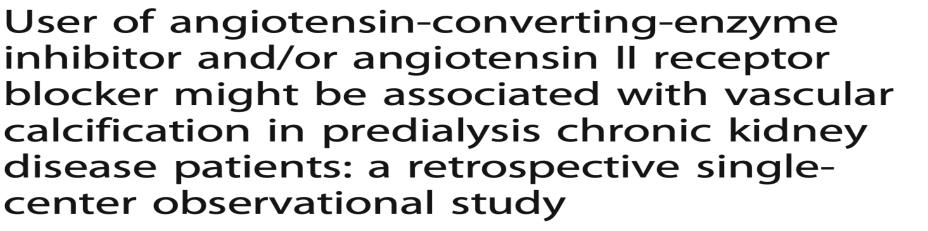
Jennifer Susan Lees,^{1,2} Fiona A Chapman,² Miles D Witham,³ Alan G Jardine,^{1,2} Patrick B Mark^{1,2}

No effect of vitamin K2 supplementation on vascular stiffness or vascular calcification measures

intervention trials evaluating effects of vitamin K supplementation in patients with advanced CKD

Patients/trial	Intervention	Duration of follow-up, mo	Relative reduction in ucMGP plasma levels at study end	Effect on calcification in vitamin K group	Effect on other outcomes in vitamin K group
Hemodialysis patients with atrial fibrillation (VALKYRIE) ¹²⁶	MK7, 2 mg, thrice weekly	18	47%	None	None on pulse-wave velocity, all-cause death, stroke, and cardiovascular event rates
CKD stage 3b–4 patients (K4Kidneys) ¹⁵⁶	MK7, 0.4 mg, daily	12	Uncertain ^a	None	None on pulse-wave velocity, augmentation index, blood pressure, B-type natriuretic peptide, or physical function
CKD stage 3–5 ND patients ¹⁵⁷	MK7, 0.09 mg, daily	9	19%	None	Reduced progression of common carotid artery intima- media thickness
Hemodialysis patients ¹⁵⁸	MK7, 0.2 mg, daily	12	47%	None	—
Hemodialysis patients ¹⁵⁹	MK7, 0.36 mg, daily	24	39% after 1 yr, 8% after 2 yr	None	None on pulse-wave velocity and blood pressure

Ongoing trials with vitamin K1


- K1, 5 mg, thrice weekly . 18 m, To be determined Hemodialysis patients (iPACK-HD)
- K1, 10 mg, thrice weekly , 12 m, To be determined Hemodialysis patients (VitaVasK)
- Treatment to reduce vascular calcification in hemodialysis patients using vitamin K (Trevasc-HDK) A study protocol for a randomized controlled tria

RESEARCH ARTICLE

Open Access

ACEI/ARB and vascular calcification

121 predialysis CKD patients (age 71 ± 12 y)

Calculatation vascular calcification volume (Calc) ;three-dimensional imaging software and standardized by body surface area (BSA)

ACEI/ARB use is significantly and positively associated with log [Calc/BSA]

RESEARCH ARTICLE

User of angiotensin-converting-enzyme inhibitor and/or angiotensin II receptor blocker might be associated with vascular

calcification in predialysis chronic kidney disease patients: a retrospective singlecenter observational study

ACEI/ARB and vascular calcification

 Conclusions: ACEI/ARB user was associated with vascular calcification in predialysis patients with low eGFR

Open Access

ORIGINAL RESEARCH ARTICLE

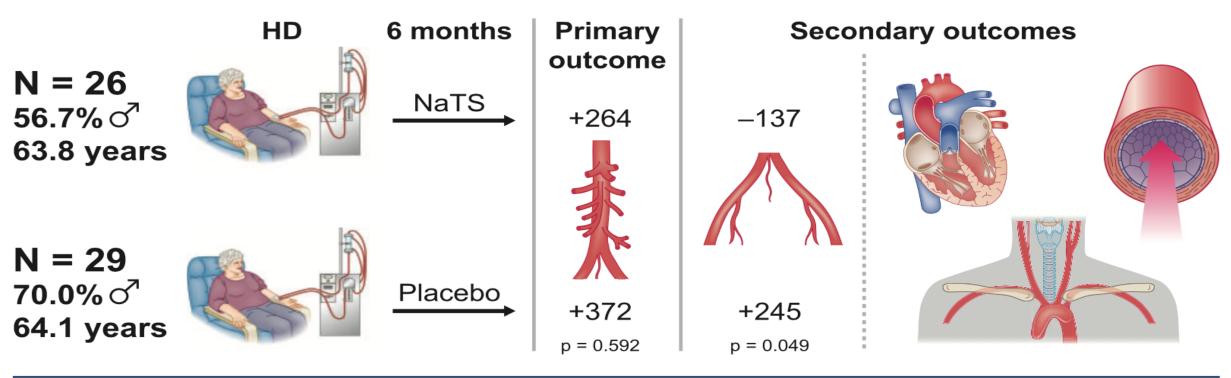
Slowing Progression of Cardiovascular Calcification With SNF472 in Patients on Hemodialysis (CaLIPS

Results of a Randomized Phase 2b Study

•SNF472, a selective inhibitor of hydroxyapatite formation and eacleso : multinational, randomized, placebo-controlled, double-blind phase 2b trial ,6 months HD with coronary artery calcium (CAC) Agatston score between 100 -3500 units, as measured on a non-contrast multidetector computed tomography (CT) scanner

ORIGINAL RESEARCH ARTICLE

Slowing Progression of Cardiovascular Calcification With SNF472 in Patients on Hemodialysis


Results of a Randomized Phase 2b Study

- 1:1:1 ratio SNF472 300 mg, SNF472 600 mg, or placebo 3 times weekly
- SNF472 significantly attenuated the progression of coronary artery and aortic valve calcification in patients with ESKD receiving hemodialysis
- Prevents the initial development of CAC : ??

RCT Dialysis

Sodium thiosulfate and calcification

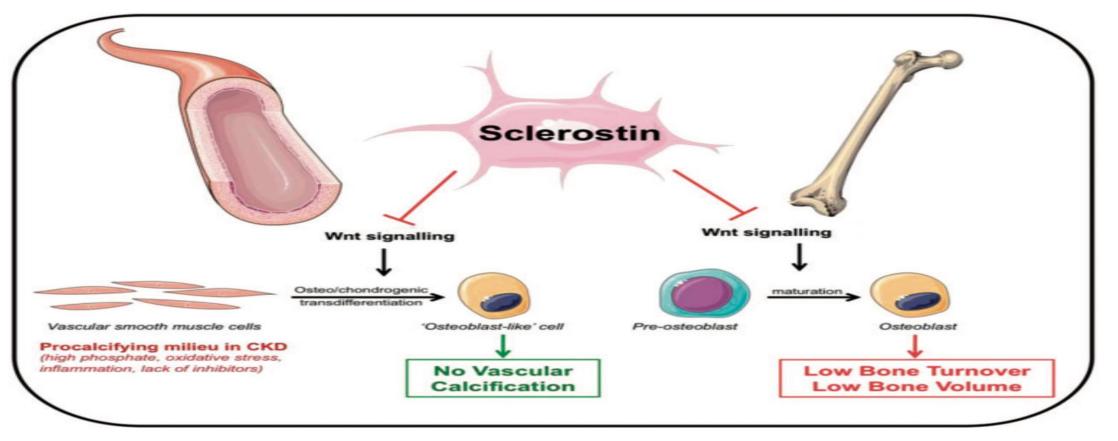
In haemodialysis patients, over 6 months, sodium thiosulfate (NaTS) reduces progression of calcification in iliac arteries and heart valves but not abdominal aorta

Djuric P., Dimkovic N., Schlieper G., et al. NDT (2019) @NDTSocial

Conclusions: NaTS failed to retard abdominal aortic calcification progress, it positively affected calcification progress in iliac arteries and heart valves as well as several other cardiovascular functional parameters

Role of Bisphosphonates in vascular calcification:

- Synthetic analogues of pyrophosphate and inhibit osteoclastmediated resorption as well as calcium-phosphate crystal deposition in bone
- **USAGE**:
- Treatment of osteoporosis
- Inhibiting arterial calcification and macrophage suppression in atheromatous lesions



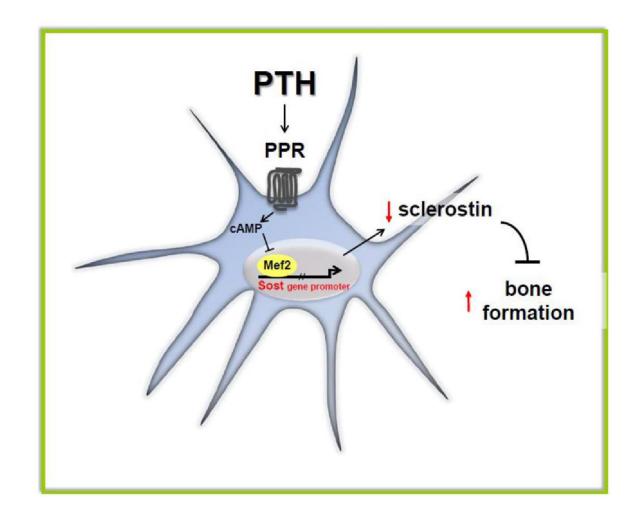
Role of Bisphosphonates in vascular calcification:

- General population(largest study 474 elderly osteoporotic women) : No effect on aortic calcification
- Patients with type 2 diabetes and osteopenia :Reduction in carotid intima-media thickness
- RCT in the pre dialysis CKD population: No difference in progression of aortic VC
- Use of low dose bisphosphonates on VC in hemodialysis patients Etidronate administration for 12 months reduced or inhibited CAC progression, but was associated with an increased risk of osteomalacia

Sclerostin and VC

Nephrol Dial Transplant (2019) 3/: 408-

High Serum Sclerostin Levels Are Associated with a Better Outcome in Hemodialysis Patients


207 HD patients Correlation serum sclerostin with aortic calcification score, BMD scores and survival rate

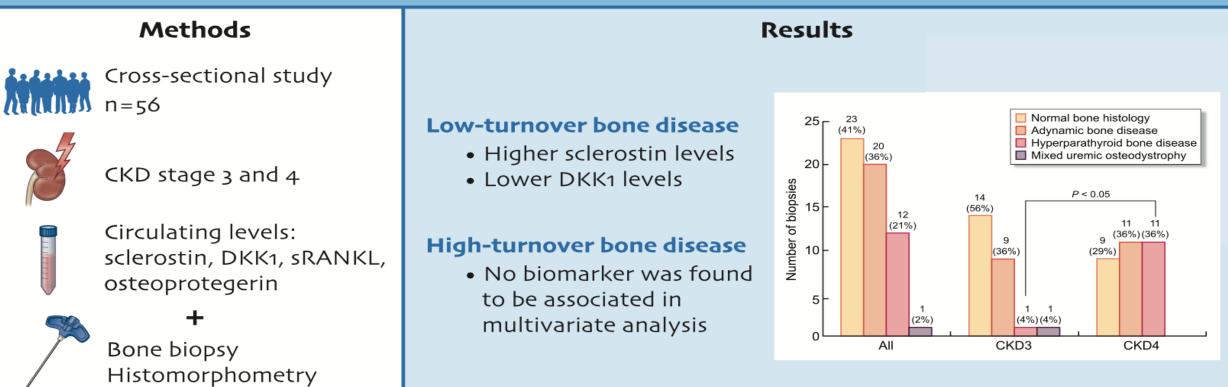
Conclusion: Our study of HD patients shows that higher serum sclerostin levels are associated with higher BMD, lower aortic calcification scores, and a better survival rate

https://doi.org/10.1159/000443845



PTH and sclerostin

PTH and sclerostin in CKD



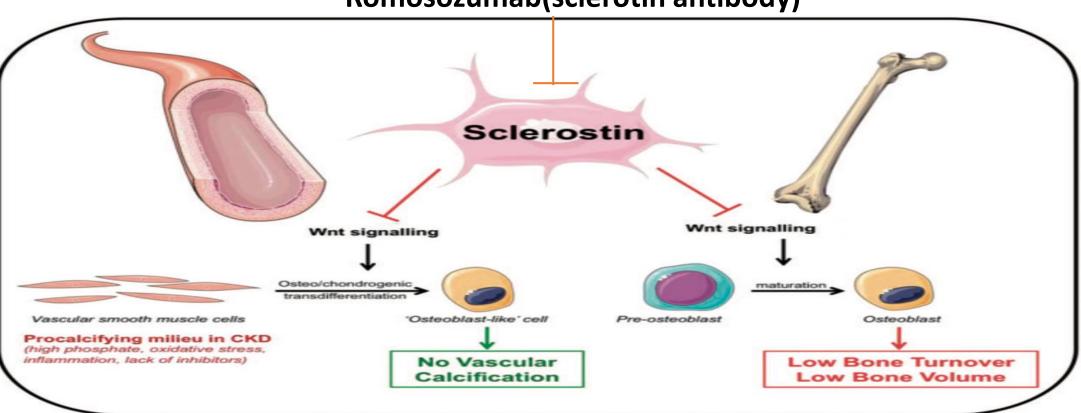
Elevations in PTH usually are associated with sclerostin inhibition and decreased phosphorylation of b-catenin. However, in CKD, sclerostin and iphosphorylated b-catenin increased, despite high PTH levels

Sclerostin and DKK1 circulating levels associate with low bone turnover in patients with chronic kidney disease stages 3 and 4

Renal osteodystrophy (ROD) is evaluated by bone biopsy, which is an invasive procedure. New bone biomarkers could be used to discriminate between turnover categories in pre-dialysis patients.

Conclusion: Circulating levels of sclerostin and DKK1 are predictive of low-turnover bone disease in patients not yet on dialysis. Further research is needed to access the performance of these bone turnover biomarkers in diagnosis and treatment monitoring of ROD.

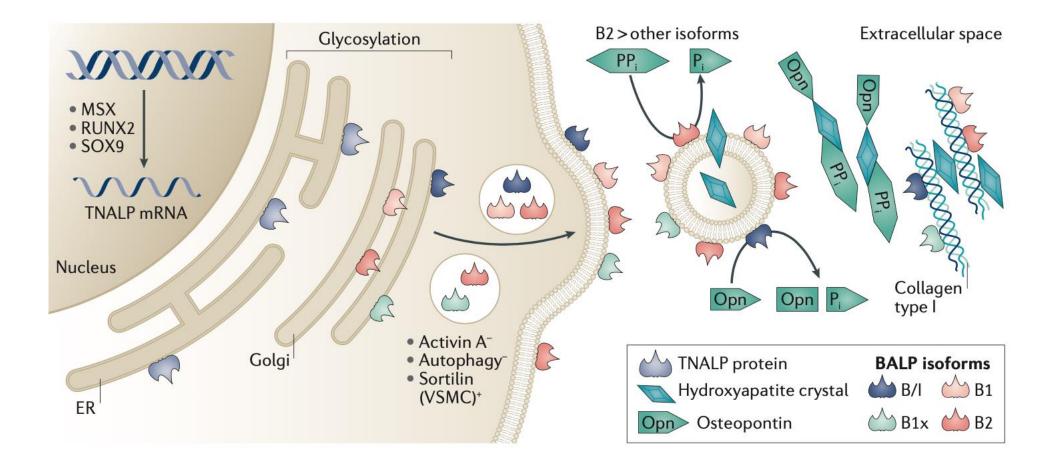
Neto R., et al Clinical Kidney Journal (مرود) @CKJS cial


Sclerostin and vascular calcifications in CKD/ESRD patients

Studies on correlation between sclerostin and vascular calcifications development

Authors and reference	Patients (n) Renal status	Type of calcifications detection and sclerostin assay	Association between sclerostin and VC
Claes et al. [70]	• 154	• AAC by lateral X-ray	• Univariate analysis: positive association
	• CKD 1 – 5	TECOmedical	 Multivariate analysis: negative association after adjustment for age, diabetes, CV history, hypertension, BMI, eGFR, CRP
Morena et al. [69]	• 241	• CAC by CT scan	 Univariate analysis: positive association
	• CKD 2 – 5	TECOmedical	 Multivariate analysis: positive association after adjustment for age, gender, diabetes, BMI and smoking
Lv et al. [75]	• 97	 AAC by CT scan 	 Univariate analysis: positive association
	• CKD 3 – 4	• Biomedica	 Multivariable analysis: positive association after adjustment for age and eGFR
Brandenburg et al. [54]	• 67	• CAC by CT scan	 Univariate or multivariate analysis: no association
_	• HD patients	TECOmedical	 But high sclerostin level associated with aortic valvular calcification in univariate and multivariate model
Delanaye et al. [71]	• 164	 AAC by CT scan 	 Univariate analysis: no association
	 HD patients 	 TECOmedical 	 Multivariable analysis: negative association
Yang et al. [73]	• 125	 Aortic calcification by X-ray 	 Univariate analysis: negative association
	 HD patients 	 R&D Systems 	
Jean et al. [63]	• 207	 AAC by lateral X-ray 	 Univariate analysis: negative association
	 HD patients 	 TECOmedical 	
Qureshi et al. [68]	• 89	 CAC by CT scan 	 Univariate analysis: positive association
	 HD patients 	 R&D Systems 	 Multivariable analysis: no association after adjustment for age, gender and diabetes
			 But in multivariate analysis for calcification detected in the tissue: positive association after adjustment for age, gender
Bruzzese et al. [76]	• 21	• CAC by CT scan	• Univariate analysis: no association
	 HD patients 	 TECOmedical 	
Wang et al. [77]	• 161	 AAC by lateral X-ray 	 Binary logistic regression analysis: positive association
	 CKD 3 – 5D (HD and PD) 	• CUSABIO	 But lower sclerostin level when AAC are moderate to severe

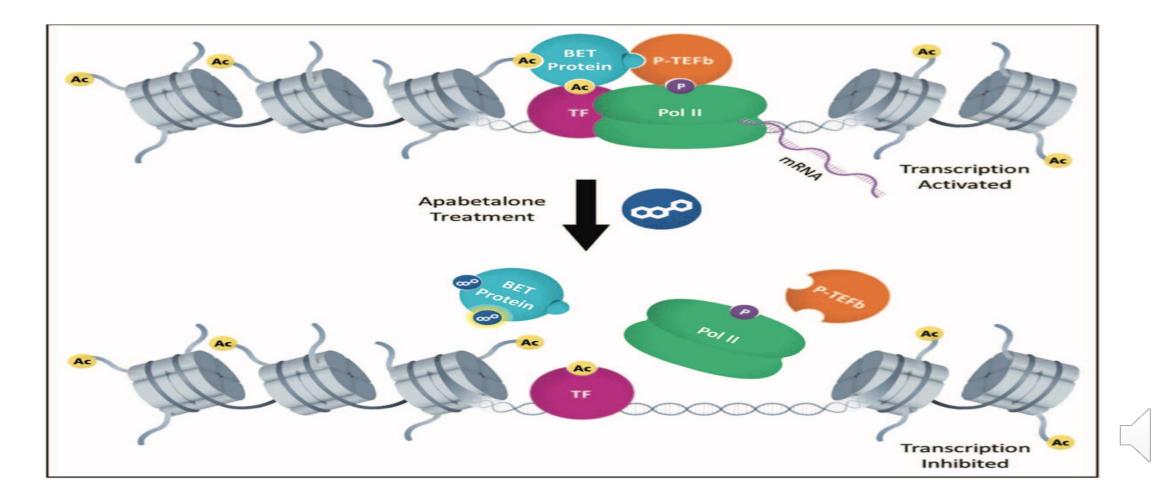
USE OF ROMOSOZUMAB FOR OSTEOPOROSIS IN HEMODIALYSIS PATIENTS Rie Kivosumi, Naofumi Ikeda Published: 06 June 2020

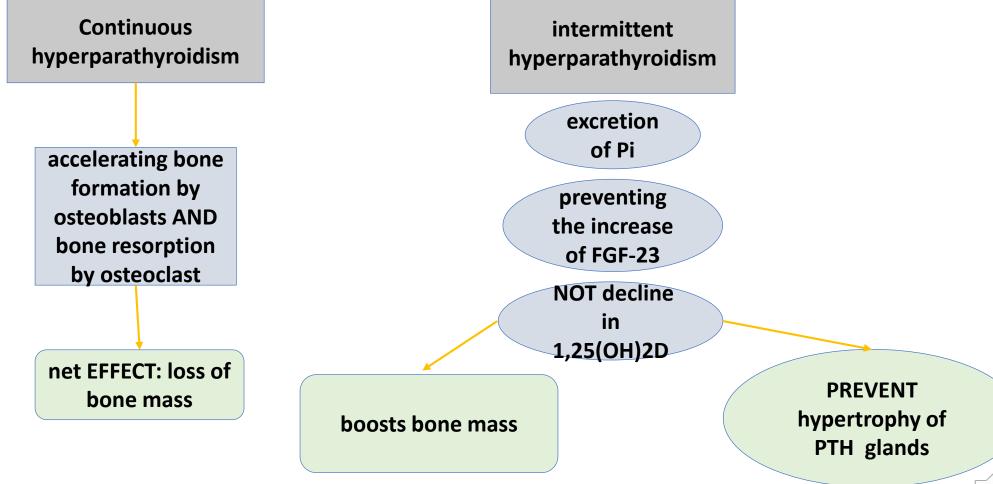


Romosozumab(sclerotin antibody)

Romosozumab is a monoclonal antibody targeting sclerostin and was recently FDA approved for the treatment of osteoporosis

Nephrol Dial Transplant (2019) 3/: 408-


BALP and VC



Pharmacologic epigenetic modulators of alkaline phosphatase in chronic kidney disease

Mathias Haarhaus^{a,b,c}, Dean Gilham^d, Ewelina Kulikowski^d, Per Magnusson^b, and Kamyar Kalantar-Zadeh^{e,f,g}

Can we Use of Exogenous Parathyroid Hormone in Management of CKD-MBD

Exogenous Parathyroid Hormone in VC

Intermittent PTH Administration could:

- Hand the Control of Phosphate levels back to PTH
- Control FGF-23 levels and Eliminate or Reduce significantly the risks associated with increased circulating FGF-23
- Achieve a better control of 1,25(OH)₂D levels
- Reduce the risk of Atherosclerosis and Cardiovascular Disease
- Prevent the elevation of PTH
- Protect the Parathyroid Glands from Hyperfunction and Prevent Hyperplasia
- Protect the Skeleton from the Catabolic Effects caused by the Continuously Elevated circulating PTH

CONCLUSION:

- No evidence that antihypertensive therapy affects VC but may reduce myocardial fibrosis and LVH
- Phosphate-Binding Therapy in patients with CKD G3-G5 except to control symptomatic or severe hyperphosphatemia
- in CKD G5D, resulting in clinical complications such as bone disease, calciphylaxis, and itching,Use of binders to prevent clinically important hyperphosphatemia is justified
- NCBP could significantly attenuate progression of coronary artery calcification than CBP

early phosphate binder use don't any vascular protection in predialysis patients

- Magnesium oxide : significantly smaller percentage change in CAC score
- calcimimetic:Beneficial trend for both arteries and cardiac valves
- Parathyroidectomy may resulted increased CAC
- Vitamin D supplementation may improve vascular function
- No effect of vitamin K2 supplementation on vascular stiffness or vascular calcification measures
- ACEI/ARB user was associated with vascular calcification in predialysis patients with low eGFR
- SNF472 significantly attenuated the progression of coronary artery and aortic valve calcification in patients with ESKD

